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&strUCt This paper gives a simple CAD formula 
for inductance of square spiral inductor with 
grounded substrate, by duality and synthetic 
asymptote. The average error of the formula is less 
than 2%. The formula also gives good physical 
insights to the layout design of the inductor spiral. 

I. INTRODUCTION 

Spiral inductors are often used in portable 
wireless communication equipment to satisfy the 
design requirements, such as, low cost, low supply 
voltage, low power dissipation, low noise, high 
frequency of operation, and low distortion. Many 
authors have treated the spiral inductors with 
different analyses. Most of these approaches were 
based on numerical techniques [ 1, 21, curve fitting, 
or empirical formulas. 

In 1987, Chow and She [3] derived an 
inductance formula of spiral inductors in free 
space through the duality of LC=j.b%,. This early 
formula was inaccurate as it did not account for the 
gaps between the spirals. The reason was that the 
techniques for including the gap were not 
developed, and neither was an available software, 
accurate and fast enough for validation at that time. 

This diffkulty is now resolved with the novel 
analytical techniques of synthetic asymptote and 
the analytical moment method. 

Synthetic asymptote has been used recently to 
generate formulas in microwave, a list available in 
[4]. Briefly, it is constructed from two known 
asymptotes at the two limits of a parameter, and 
adjusted for accuracy in between. The formulas 
obtained by synthetic asymptote technique are 
simple, accurate and therefore give good physical 
insights. 

Analytical moment method is the moment matrix 
expressed in the variational form and then into an 
analytical formula. This formula is easily adjusted 

for plate perforations [4], including the gaps 
between spirals. 

The formula of inductance of spiral inductor is 
derived in detail in this paper. The average error is 
less than 2%. The formulas of the stray capacitors 
of the spiral can be derived in a similar way. 

II. CADFORMULASFORINDUCTANCE OF 

SPIRALIND~~TOR~ 

Spiral inductors can be fabricated in many 
shapes, such as square, hexagonal, octagonal, and 
circular. In this initial paper, we only consider the 
square spiral inductor of Fig. 1. The inductor is 
cdmpletely specified by the number of turns N, the 
turn width W, the gap S between spirals, and any 
one of the following: d,,,t, the outermost dimension, 
din, the innermost dimension, or theJill ratio of the 
spiral inductor p = (d,,, - d, )/(d,,, + d, ) . For a 

spiral inductor with grounded substrate, we need 
two more parameters: h, the substrate thickness, 
and E,, the dielectric constant. 

In this paper, however, we consider only the 
formula of the inductance of the spiral and not the 
parasitic capacitances. Being of magnetic field, 
inductance is independent of the substrate 
dielectric. Therefore, the inductor may again be 
assumed in free space as in [3] but with the added 
spiral gaps and ground plane. 

The derived inductance formula is verified 
against numerical results at low frequency [5]. 
That is, the frequency in the numerical 
computation will be low enough that the parasitic 
capacitance would not affect the reactance 
obtained and therefore the inductance value. 

Fig. 1 shows the square spiral inductor with 
grounded substrate. The thickness of the inductor 
is considered zero, as the thickness normally has 
little effect on the inductance. 
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Fig. 1. The configuration of square spiral inductor: 
(a) top view; (b) side view. 

A square spiral inductor may be divided into 4 
trapezoids, as in Fig. 2a. Adjacent trapezoids have 
no mutual inductance as their currents are 
perpendicular. The two opposing trapezoids has 
opposite currents, therefore, they have mutual 
inductance. 

A. The Far Asymptote of substrate thickness h 

When the substrate is very thick, that is: h + 00, 
the far ground plane has little effect on the spiral 
inductor. This means that the spiral inductor is in a 
homogeneous free space. 

Consider a solid trapezoidal quarter-plate in free 
space from Fig. 2a. Based on the “root of area” [4], 
the capacitance of this solid quarter-plate is: 

C 1 f 4solid = c/*%/~ (1) 

where A,,, = bi -!I: with effective widths of the 

trapezoid 2b, = d,, + S , 2b, = d, + S , and the 

@I 
Fig. 2. The division of spiral inductor: (a) 4 
trapezoids, (b) a square segment along the spiral. 

shape factor cfl of the trapezoidal plate is to be 
computed later in (4). 

The area of each quarter of the spiral inductor is 
divided into NX M equal square segments of 
Ws2. As shown in Fig. 2b, each segment has a 
conducting-area Ww, plus the surrounding gap- 
area. Here, N is the turn number of the spiral, and 
M=(b, +b,)lW, with W, =W+S, is the 
averaged sub-area number across a straight spiral 
arm. 

A grid is formed with a small conducting sub- 
area deleted from each square segment on a solid- 
plate [4]. The shape of the sub-area itself has been 
shown to be unimportant. The empty gap-areas of 
Fig. 2b are also small conducting sub-areas deleted 
from a segment of the quarter-plate. Therefore we 
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may say that the quarter-spiral of Fig. la is also a 
grid formed the solid quarter-plate in Fig. 2a. 

The formula of the capacitance of a conducting 
grid has been derived from the analytical moment 
method (MOM) and the variational principle [4]. 
From this the capacitance of the quarter-spiral, fur 
from the ground plane, can be written as: 

c 1 
114jiir = 

[ Cf,EOjiGq + 41~~110 1 -- 
4Loro 

(2) 

where r = 4(b’ + ‘lb2 +“) is the distance of the 0 
W, + b2 > 

two centroids of the two opposing trapezoids. The 
terms in the bracket of the denominator are the 
self-potential of the quarter-spiral. The term 
outside the bracket of the denominator is the 
mutual Coulomb potential between the opposite 
quarter spirals. 

In (2) &, , and 4, ,. are, respectively, the self- 

potentials of a segment in grid form and the solid 
plate form of the quarter-plate. From [4], they are: 

A?%= l 
cf~o$m- 

(34 

A?,,, = CFoF 8XWS2 
W) 

where the shape factor cr = 0.865 accounting for 

the charge singularities along only two edges in 
each segment along the spiral. 

The shape factor c~ in Eq. (l), after curve-fitting 
from a large number of trapezoidal shapes of the 
quarter-spiral, can be taken as a function of p (the 
jll ratio of the spiral inductor due to the hole in 
Fig. 2a): 

cfl = 0.90571+ 0.49425e-p’0.12253 (4) 

Eq. (2) is thefar asymptote of the capacitance of 
the quarter-spiral as the substrate thickness h 
becomes very large. 

B. The near asymptote of substrate thickness h 

When h + 0, that is the substrate is very thin, 
the capacitance of the square spiral inductor is 

simply that of parallel plate of conducting spirals, 
i.e., 

c &oh4 w 
1/4near 

=-.- 
h W, t 

(5) 

C. The synthetic asymptote for A and B 

The synthetic asymptote is frequently simply the 
sum of the two regular asymptotes&r and near, as 
observed in many examples of [4]. Hence, for 4 
trapezoids, the synthetic asymptote of the square 
spiral inductor is, through the duality LC=p+gg, 

L=4 PO&O 

( + Cl?4near )” 

N2 (b, + b2)2 (6) 
G4Jilr 

where (bl+b2) is the averaged length of the spiral 
arms in a trapezoid. Even with the power n=l, the 
synthetic asymptote (6) agrees with far and near 
asymptotes h converted to L. Obviously, the 
maximum error is no more than 10% at 
intermediate values of h as shown in Fig. 3. If now 
the power n is changed from unity to a numerically 
matched expression of 

n = l-3461_ o.65g2e-0.6’39*‘Y,+0.2918hlW (7) 

The error is reduced again to 2%. The 
improvement is examined in detail below. 

111. RESULTS 

To verify the accuracy of the Eq. (6), the 
numerical method [5] has been chosen for 
comparison. Table 1 shows the comparison results 

TABLE 1 
COMPARISON OF THE RESULTS BY SYNTHETIC 
ASVMPTOTE FORMULA (6) AND NUMERICAL 
METHOD[~]INFREESPACE. 

W S L-num I L-formula I Error 
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of square spiral inductors in free space with no It is evident that the above approach of plate 
ground plane. W, S, and d,, have the unit m. L- partition can be applied to generate an inductance 
num is by numerical method [5], L-formula is by formula for rectangular spiral inductors. With 
synthetic asymptote formula (6) in nH. The modification, we believe that the approach can 
average error is less than 2%. also be applied to circular spirals. 

-synthetic asymptote with 

0.01 0.1 
0.1875 1.075 

1OWh 
%lh 

Fig. 3. Comparison of the results by synthetic 
asymptote formula (6) and numerical method [5]. 

For different air-substrate thickness, Fig. 3 
shows and compares the results calculated by both 
the synthetic asymptote (6), and the numerical 
method [5] at 100 MHz. The average error is less 
than 2%. Also, the regular asymptotes of (2) and 
(5) converted to L are plotted in Fig. 3 to give a 
physical insight on the approach of the regular 
asymptotes to the synthetic asymptote. There are 
two abscissas in Fig. 3, that is: W/h and d,,dh. This 
could help the inductor design by giving a 
comparison on the different dimensions of the 
spiral with respect to the substrate thickness h. 

IV.CONCLUSION 

This paper obtained the inductance formulas of 
square spiral inductor by duality and synthetic 
asymptote at low frequency. For high frequency 
and/or thin substrate, however, the capacitance to 
ground, the interwinding capacitance, and the air- 
bridge connecting to the input and/or output 
become important. They are again derived by the 
repeated use of the duality relation, the synthetic 
asymptote and the analytical moment method. The 
derivations are a little too lengthy to be added in 
this paper. 
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