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Inductance Formula of a Square Spiral Inductor on Grounded
Substrate by Duality and Synthetic Asymptote
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Abstract . This paper gives a simple CAD formula
for inductance of square spiral inductor with
grounded substrate, by duality and synthetic
asymptote. The average error of the formula is less
than 2%. The formula also gives good physical
insights to the layout design of the inductor spiral.

- I. INTRODUCTION

Spiral inductors are often used in portable
wireless communication equipment to satisfy the
design requirements, such as, low cost, low supply
voltage, low power dissipation, low noise, high
frequency of operation, and low distortion. Many
authors have treated the spiral inductors with
different analyses. Most of these approaches were
based on numerical techniques [1, 2], curve fitting,
or empirical formulas.

In 1987, Chow and She [3] derived an
inductance formula of spiral inductors in free
space through the duality of LC=t,&. This early
formula was inaccurate as it did not account for the
gaps between the spirals. The reason was that the
techniques for including the gap were not
developed, and neither was an available software,
accurate and fast enough for validation at that time.

This difficulty is now resolved with the novel
analytical techniques of synthetic asymptote and
the analytical moment method.

Synthetic asymptote has been used recently to
generate formulas in microwave, a list available in
[4]. Briefly, it is constructed from two known
asymptotes at the two limits of a parameter, and
adjusted for accuracy in between. The formulas
obtained by synthetic asymptote technique are
simple, accurate and therefore give good physical
insights.

Analytical moment method is the moment matrix
expressed in the variational form and then into an
analytical formula. This formula is easily adjusted
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for plate perforations [4], including the gaps
between spirals.

The formula of inductance of spiral inductor is
derived in detail in this paper. The average error is
less than 2%. The formulas of the stray capacitors
of the spiral can be derived in a similar way.

II. CAD FORMULAS FOR INDUCTANCE OF
SPIRAL INDUCTORS

Spiral inductors can be fabricated in many
shapes, such as square, hexagonal, octagonal, and
circular. In this initial paper, we only consider the
square spiral inductor of Fig. 1. The inductor is
completely specified by the number of turns N, the
turn width W, the gap S between spirals, and any
one of the following: d,, the outermost dimension,
di,, the innermost dimension, or the fill ratio of the
spiral inductor p=(d,, ~d,)/(d,, +d,) . Fora
spiral inductor with grounded substrate, we need
two more parameters: 4, the substrate thickness,
and &, the dielectric constant.

In this paper, however, we consider only the
formula of the inductance of the spiral and not the
parasitic capacitances. Being of magnetic field,
inductance is independent of the substrate
dielectric. Therefore, the inductor may again be
assumed in free space as in [3] but with the added
spiral gaps and ground plane.

The derived inductance formula is verified
against numerical results at low frequency [5].
That is, the frequency in the numerical
computation will be low enough that the parasitic
capacitance would not affect the reactance
obtained and therefore the inductance value.

Fig. 1 shows the square spiral inductor with
grounded substrate. The thickness of the inductor
is considered zero, as the thickness normally has
little effect on the inductance.
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Fig. 1. The configuration of square spiral inductor:
(a) top view; (b) side view.

A square spiral inductor may be divided into 4
trapezoids, as in Fig. 2a. Adjacent trapezoids have
no mutual inductance as their currents are
perpendicular. The two opposing trapezoids has
opposite currents, therefore, they have mutual
inductance.

A. The Far Asymptote of substrate thickness h

When the substrate is very thick, that is: A — oo,
the far ground plane has little effect on the spiral
inductor. This means that the spiral inductor is in a
homogeneous free space.

Consider a solid trapezoidal quarter-plate in free
space from Fig. 2a. Based on the “root of area” {4],
the capacitance of this solid quarter-plate is:

1)
where 4, =b22 —b,2 with effective widths of the
trapezoid 2b, =d,, + S, 2b, =d, +§, and the

Clrasoia =€ r1€0 84
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Fig. 2. The division of spiral inductor: (a) 4
trapezoids, (b) a square segment along the spiral.

shape factor ¢, of the trapezoidal plate is to be
computed later in (4).

The area of each quarter of the spiral inductor is
divided into NXM equal square segments of

Wsz. As shown in Fig. 2b, each segment has a

conducting-area WW, plus the surrounding gap-
area. Here, N is the turn number of the spiral, and
M=(b,+b)/W, with W, =W+S§, is the
averaged sub-area number across a straight spiral
arm.

A grid is formed with a small conducting sub-
area deleted from each square segment on a solid-
plate [4]. The shape of the sub-area itself has been
shown to be unimportant. The empty gap-areas of
Fig. 2b are also small conducting sub-areas deleted
from a segment of the quarter-plate. Therefore we



may say that the quarter-spiral of Fig. 1a is also a
grid formed the solid quarter-plate in Fig. 2a.

The formula of the capacitance of a conducting
grid has been derived from the analytical moment
method (MoM) and the variational principle [4].
From this the capacitance of the quarter-spiral, far
from the ground plane, can be written as:

1

CI/4far =
1 + Ap“ "Apno - 1
€€, /87:A1 /4 NM 4me,r,
@
2 2
where 7y = 4o +bb, +b) is the distance of the
3(b, +b,)

two centroids of the two opposing trapezoids. The
terms in the bracket of the denominator are the
self-potential of the quarter-spiral. The term
outside the bracket of the denominator is the
mutual Coulomb potential between the opposite
quarter spirals.

In (2) Ap,, and Ap,,, are, respectively, the self-

potentials of a segment in grid form and the solid
plate form of the quarter-plate. From [4], they are:

1

Ap,| = ———— 3
U c e8I, (32)
! (3b)

APy =———

where the shape factor ¢, = 0.865 accounting for

the charge singularities along only two edges in
each segment along the spiral.

The shape factor ¢, in Eq. (1), after curve-fitting
from a large number of trapezoidal shapes of the
quarter-spiral, can be taken as a function of p (the
fill ratio of the spiral inductor due to the hole in
Fig. 2a):

¢, =0.90571+0.49425¢7° 10123 gy

Eq. (2) is the far asymptote of the capacitance of
the quarter-spiral as the substrate thickness A
becomes very large.

B. The near asymptote of substrate thickness h

When h — 0, that is the substrate is very thin,
the capacitance of the square spiral inductor is

simply that of parallel plate of conducting spirals,
ie.,

_&dys W
/4near h W
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C. The synthetic asymptote for A and B

The synthetic asymptote is frequently simply the
sum of the two regular asymptotes, far and near, as
observed in many examples of [4]. Hence, for 4
trapezoids, the synthetic asymptote of the square
spiral inductor is, through the duality LC=,&,,

L=4 o N3(b, +b,)?
(Cl';4 Sar + Cl"/lineary
where (b;+b,) is the averaged length of the spiral
arms in a trapezoid. Even with the power n=1, the
synthetic asymptote (6) agrees with far and near
asymptotes h converted to L. Obviously, the
maximum error is no more than 10% at
intermediate values of 4 as shown in Fig. 3. If now
the power » is changed from unity to a numerically
matched expression of

n =1 3461_0 6592e—0.6l39h/W,+0.2918h/W (7)
The error is reduced again to 2%. The
improvement is examined in detail below.

©)

III. RESULTS

To verify the accuracy of the Eq. (6), the
numerical method [5S] has been chosen for
comparison. Table 1 shows the comparison results

TABLE 1
COMPARISON OF THE RESULTS BY SYNTHETIC
ASYMPTOTE FORMULA (6) AND NUMERICAL
METHOD [5] IN FREE SPACE.

N | dw | W S L-num |L-formula| Error

2130019 | 4 | 19984 | 1.98319 |-0.76%
4 [300]| 5 4 | 9.6603 | 9.55136 |{-1.13%
51171154119 | 56877 | 56239 |-1.12%
6 (400 | 24 | 7 | 71225 | 7.2288 | 1.49%
7 [300] 13| 7 | 75329 | 7.5595 | 0.35%
81300 5 4 23.59 | 23.084 |-2.14%
9 [230| 65| 55| 95775 | 9.5561 |-0.22%
12| 180 | 3.2 | 2.1 20.3 19.8286 | -2.32%

2071




of square spiral inductors in free space with no
ground plane. W, S, and d,,; have the unit um. L-
num is by numerical method [5], L-formula is by
synthetic asymptote formula (6) in nH. The
average error is less than 2%.
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Fig. 3. Comparison of the results by synthetic
asymptote formula (6) and numerical method [5].

For different air-substrate thickness, Fig. 3
shows and compares the results calculated by both
the synthetic asymptote (6), and the numerical
method [5] at 100 MHz. The average error is less
than 2%. Also, the regular asymptotes of (2) and
(5) converted to L are plotted in Fig. 3 to give a
physical insight on the approach of the regular
asymptotes to the synthetic asymptote. There are
two abscissas in Fig. 3, that is: W/h and d,/h. This
could help the inductor design by giving a
comparison on the different dimensions of the
spiral with respect to the substrate thickness 4.

IV. CONCLUSION

This paper obtained the inductance formulas of
square spiral inductor by duality and synthetic
asymptote at low frequency. For high frequency
and/or thin substrate, however, the capacitance to
ground, the interwinding capacitance, and the air-
bridge connecting to the input and/or output
become important. They are again derived by the
repeated use of the duality relation, the synthetic
asymptote and the analytical moment method. The
derivations are a little too lengthy to be added in
this paper.
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It is evident that the above approach of plate
partition can be applied to generate an inductance
formula for rectangular spiral inductors. With
modification, we believe that the approach can
also be applied to circular spirals.
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